SEBI turns its spotlight on of AI (Artificial Intelligence) and ML (Machine Learning)



          The increasing deployment of AI and ML in the Mutual Funds market has prompted to turn the spot light on AI and ML.

SEBI through Circular No SEBI/HO/IMD/DF5/CIR/P/2019/63 May 09, 2019 addressed to:

  • ·       All Mutual Funds (MFs) /
  • ·       Asset Management companies (AMCs) /
  • ·       Trustee Companies / Board of Trustees of Mutual Funds /
  • ·       Association of Mutual Funds in India (AMFI)

Is introducing a Reporting Mechanism for for Artificial Intelligence (AI) and Machine Learning (ML) applications and systems offered and used by Mutual Funds


Background

SEBI has noticed that there is increasing usage of AI (Artificial Intelligence) and ML (Machine Learning) as product offerings by market intermediaries and participants (e.g.: “robo advisors”) in investor and consumer facing products.

To have a fair picture of the deployment of AI and ML in mutual funds, SEBI is conducting a survey. 

The objective of the survey is to create  an inventory of the AI / ML landscape in the Indian financial markets to gain an in-depth understanding of the adoption of such technologies in the markets and to ensure preparedness for any AI / ML policies that may arise in the future.

 As most AI / ML systems are black boxes and their behavior cannot be easily  quantified, SEBI believes that it is imperative to ensure that any advertised financial benefit owing to these technologies in investor facing financial products offered by intermediaries should not constitute to misrepresentation. 

Scope definition

Any set of applications / software / programs / executable / systems (computer
systems) – cumulatively called application and systems,

a. that are offered to investors (individuals and institutions) or used internally by Mutual Funds to facilitate investing and trading or for any other purpose,

OR
b. to disseminate investments strategies and advice,

OR
c. to carry out compliance / operations / activities, where AI / ML is portrayed as a part of the public product offering or under usage for compliance or management purposes, is included in the scope of this circular.

Here, “AI” / “ML” refers to the terms “Artificial Intelligence” and “Machine Learning” used as a part of the product offerings. In order to make the scope of this circular inclusive of various AI and ML technologies in use, the scope also covers Fin-Tech and Reg-Tech initiatives undertaken by market participants that involves AI and ML.

Technologies that are considered to be categorized as AI and ML technologies in the scope of this circular, are explained in detailed Annexure B. 

Regulatory requirements 

SEBI has mandated that all  registered Mutual Funds offering or using applications or systems as defined in Annexure B, should participate in the reporting process by completing the AI / ML reporting form 

The start date is t from quarter ending June 2019, registered Mutual Funds using AI / ML based application or system as defined in Annexure B, are required to fill in the form (Annexure A) and make submissions on quarterly basis within 15 calendar days of the expiry of the quarter to AMFI. 

SEBI in turn has to consolidate the information on AI / ML applications and systems reported by Mutual Funds on quarterly basis and submit to SEBI.   

Annexure B – Systems deemed to be based on AI and ML technology Applications and Systems belonging but not limited to following categories or a combination of these:

1. Natural Language Processing (NLP), sentiment analysis or text mining systems that gather intelligence from unstructured data. – In this case, Voice to text, text to intelligence systems in any natural language will be considered in scope. E.g.: robo chat bots, big data intelligence gathering systems.

2. Neural Networks or a modified form of it. – In this case, any systems that uses a number of nodes (physical or software simulated nodes) mimicking natural neural networks of any scale, so as to carry out learning from previous firing of the nodes will be considered in scope. E.g.: Recurrent Neural networks and Deep learning

3. Neural Networks -  Machine learning through supervised, unsupervised learning or a combination of both. – In this case, any application or systems that carry out knowledge representation to form a knowledge base of domain, by learning and creating its outputs with real world input data and deciding future outputs based upon the knowledge base. E.g.: System based on Decision tree, random forest, K mean, Markov decision process, Gradient boosting Algorithms.

4. A system that uses statistical heuristics method instead of procedural algorithms or the system / application applies clustering or categorization algorithms to categorize data without a predefined set of categories.

5. A system that uses a feedback mechanism to improve its parameters and bases it subsequent execution steps on these parameters.

6. A system that does knowledge representation and maintains a knowledge base.


Additional Reading Material: Click on the blue link




Comments

  1. In AI, the game theory is widely used to enable some of the key capabilities required in the multi-agent environment, in which multiple agents try to interact with each other to achieve a goal.
    http://todayssimpleaiformarketing.com/

    ReplyDelete

Post a Comment

Popular posts from this blog

CERTIFICATE EXAMINATION IN INTERNATIONAL TRADE FINANCE

IIBF-Certificate Examination in Foreign Exchange Facilities for Individuals

IIBF introduces Self-Paced E-learning courses (SPeL) for its two certificates